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In this paper, we present a comprehensive scheme for wireless monitoring of the respiratory movements
in humans. Our scheme overcomes the challenges low signal-to-noise ratio, background clutter and high
ccepted 14 November 2013
vailable online 9 December 2013

sampling rates. It is based on the estimation of the ultra-wideband channel impulse response. We suggest
techniques for dealing with background clutter in situations when it might be time variant. We also
present a novel methodology for reducing the required sampling rate of the system significantly while
achieving the accuracy offered by the Nyquist rate. Performance results from simulations conducted
with pre-recorded respiratory signals demonstrate the robustness of our scheme for tackling the above
challenges and providing a low-complexity solution for the monitoring of respiratory movements.
. Introduction

Respiratory parameters such as respiratory rate and ampli-
ude provide vital information about a person’s state of health.
iagnosis of several illnesses and disorders, such as the sleep
pnea, is based on the analysis of recordings of respiratory move-
ents while the patient is asleep [1]. Such recordings are usually

erformed overnight in isolated hospital environments using poly-
omnography during which the patient is required to sleep under
onditions of restricted motion while connected to numerous
evices and electrodes [2]. Furthermore, to assess the effectiveness
f treatment, the study might be repeated several times. The asso-
iated costs and discomfort can be high for the patient. As such, a
on-invasive non-contact technique that offers low cost and reli-
ble monitoring of respiratory movements is needed.

Ultra-wideband (UWB) technology offers the possibility of
onitoring respiratory movements non-invasively and wirelessly.

ndeed, UWB technology has been increasingly studied for ranging
nd imaging applications in medical environments. Compared with
arrowband technologies, UWB offers the large bandwidth suit-
ble for high-resolution ranging while operating in a low-power
egime [3]. UWB signals create no or minimal interference with
ther sensitive equipment in the surroundings, which is of crit-
cal importance in medical environments. Although, applications

uch as the monitoring of respiratory movements and diagnosis of
he sleep apnea have been considered in the past, they have been
imited by several practical challenges. Most earlier studies, such
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as [4–6], focus on estimating only vital signs, such as breathing
and heart rates. Diagnosis of many illnesses and disorders, how-
ever, requires continuous monitoring of the respiratory amplitude
to detect abnormalities in the breathing pattern. This requires accu-
rate tracking of respiratory signal with high range resolution.

Monitoring via UWB poses several challenges including multi-
path effects, low signal-to-noise ratios (SNR) and the requirement
of high sampling rates. These challenges are compounded by non-
isolated and possibly time-variant environments. Solution for some
of these issues can be found in the literature but, to the best of
our knowledge, no comprehensive scheme has been suggested that
simultaneously deals with all of these issues. Many earlier tech-
niques were based on time-of-arrival (TOA) methods that rely on
accurate identification of the direct path component. However, in
a multipath environment, a direct path may not exist or it may
not be the strongest [8]. Some schemes, such as the one presented
in [9], assume that the multipath environment is known and time-
invariant to deal with this issue, but this assumption is not practical
in any non-isolated environment. Other schemes, such as those pre-
sented in [10,11], attempt to identify the direct path, which is a
challenging task and adds additional complexity to the problem.

To improve the effective SNR, a technique was suggested in
[7] that utilizes the redundant information available in the sub-
peaks of the received signal. The effectiveness of this technique
is, however, limited. A more widely used technique in typical UWB
systems is to utilize multiple pulse transmissions to build a stronger
received signal profile through averaging [4,5]. Because of their

large bandwidths, UWB systems require high sampling rates to
recover information accurately from the received signals. A solution
to this problem has not been considered in the literature. Almost
all techniques rely on equipment such as the digital oscilloscope as
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Fig. 1. An ultra-wideband pulse.

heir front-end hardware to achieve good tracking accuracy [7,9].
ependence on such complex hardware is a major bottleneck in
ny efficient and cost-effective UWB solution.

In this paper, we present a low-complexity UWB technique for
onitoring respiratory movements of a human subject. Our goal

ere is to develop a low-complexity solution that provides reli-
ble tracking performance in a realistic environment. We suggest a
imple and novel technique to mitigate the effects of multipaths
n a time varying environment. Unlike UWB schemes proposed
reviously in the literature, our technique reduces the required
ampling rate significantly, which not only lowers the complexity
f the proposed scheme but also eases the hardware requirements.
e formulate the problem from a sparse signal estimation perspec-

ive using a Bayesian framework, which helps us in achieving good
racking performance against low SNR values. Simulation results
emonstrate the robustness of our scheme in providing solutions
o be above-mentioned challenges while maintaining low levels of
omplexity.

The remainder of this paper is organized as follows. Section 2
rovides a brief overview of ultra-wideband technology and dis-
usses localization issues in the presence of noise and clutter.
ection 3 defines the signal model for the transmitted and received
ignals and describes the relationship between the received mea-
urements and the sparse vector whose evolutions represent
espiratory movements. A brief overview of the Support Agnostic
ayesian Matching Pursuit (SABMP) algorithm, used for sparse sig-
al recovery, is presented in Section 4. We summarize our scheme

n Section 5. Section 6 presents the simulation results and per-
ormance analysis for the tracking of a pre-recorded respiratory
ignal. The paper concludes with a brief summary of the proposed
pproach, its novelty and the achieved performance, in Section 7.

. Ultra-wideband systems

UWB systems essentially use nano- or picosecond pulses as their
ransmitted signals. Fig. 1 shows the typical shape of a transmitted
ulse in a UWB system. The pulse in the figure is a second derivative
aussian pulse with its mathematical expression given by [12]:

tx(t) = 1 − ((t − �)/�2)√
2��

exp
(

− t − �

2�2

)
, (1)
here � = Tw/2, � = Tw/7 and Tw is the pulse width.
As mentioned in Section 1, despite its advantages, wireless mon-

toring through UWB poses several practical challenges. These
hallenges are discussed in the following subsections.
g and Control 10 (2014) 192–200 193

2.1. Signal-to-noise ratio

Because of their low power profiles under FCC regulations [16],
typical UWB systems cannot be expected to operate in regimes with
high signal-to-noise ratios (SNR). A typical technique to improve
the effective SNR is to transmit multiple pulses within a single mea-
surement time window and average the received signals over that
period [5]. Performance in low SNR regimes, however, can also be
improved by exploiting the sparsity inherent in the UWB chan-
nel impulse response and through its estimation using a Bayesian
framework. Section 3.3 presents details on how to formulate the
respiratory movement tracking problem using UWB signals as a
sparse signal estimation problem. We note that a multiple pulse
transmission scheme can still prove to be useful for relaxing the
sampling rate constraint as discussed further in the next section.

2.2. Sampling rates

The respiratory signal has a low peak-to-peak amplitude typi-
cally in the range of 4–12 mm. Variations are hence small and can
be tracked accurately only by utilizing high-resolution pulses. The
relationship between the range resolution ır and the pulse width
is given by:

ır = Tw · c

8
, (2)

where Tw is the width of the pulse in the time domain and c is the
speed of the electromagnetic waves. The required Nyquist sampling
rate is given by [12]:

fN = 4
Tw

. (3)

Obtaining a range resolution of 2 mm, for example, requires a
pulse width of 50 ps. This translates into a Nyquist sampling rate
of 80 GHz, which is too high for any practical purpose. For sig-
nals which exhibit repetitive nature, Equivalent Time Sampling (ETS)
[12,14,15] provides a solution by sampling at progressively increas-
ing time intervals. This progressive sampling approach, however,
adds complexity to the design of the sampler. In Section 3.2, we
build upon the idea of ETS and present a novel scheme that enables
us to recover UWB signals while operating at sub-Nyquist rates.
Compared with the ETS approach, our scheme utilizes uniform
sampling and rely on a simple constrain to guarantee signal recov-
ery while sampling at sub-Nyquist rates and thereby avoiding any
design complications.

2.3. Multipaths

The respiratory motion of a human consists of the movement
of the chest wall and the abdomen. The chest expands or shrinks
as air is taken in and out of the lungs. To monitor the respiratory
movements, a UWB transreceiver directed towards the chest can
be used as shown in Fig. 2. The transmitter emits pulses that are
reflected off the chest of the human subject. However, due to mul-
tipaths, these reflections will be superimposed by the reflections of
the same pulses off other objects in the environment, creating an
impulse response that is expected to be non-sparse in general. The
components of the impulse response reflected off objects other
than the chest of the human subject, called the background, can
be more dominant than the components reflected off the chest,
which is our signal of interest. It is therefore essential to eliminate
the background before useful information can be extracted from

the measurements. In the case where the background is assumed
known or constant, it can be estimated by averaging measurements
over a certain period and subtracting the average from subse-
quent measurements [17]. However, in practical situations, the
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Fig. 2. Illustration of the positioning of the

ackground might be unknown and time varying, which suggests
hat a more robust background removal scheme is needed. In
ection 3.2, we propose a novel technique for mitigating the
ackground effect.

. Signal model

We approach our problem from a sparse signal estimation per-
pective, which allows us to exploit the sparse nature of the UWB
mpulse response to obtain high performance at low SNR values.
he novel technique proposed here utilizes a modified form of the
ultiple pulse transmission scheme, which helps to reduce the

equired sampling rate. We first revisit the typically used multi-
ulse signal model utilized for improving the SNR in Section 3.1 and
hen we modify this model in Section 3.2. We present the expres-
ions for the single path case which is sufficient for our formulation
ue to our scheme for background removal presented in Section 3.3.

.1. A multi-pulse transmission scheme for improved
ignal-to-noise ratio

In typical multi-pulse transmission schemes [5], the transmitted
ignal consists of a sequence of N pulses as shown in Fig. 3 and
xpressed mathematically as

(t) =
N−1∑
k=0

ptx(t − kTp). (4)

All pulses have a duration of time Tw and are separated by inter-
als of duration Tp. These pulses are transmitted within a single
easurement window of time period Ts. Here, Tp is assumed to

e greater than Tw and chosen such that the multipaths die out
efore transmission of the next pulse in the sequence. The trans-
itted pulse, ptx, used here is the second derivative Gaussian pulse

s given in (1).
The received pulses will be delayed versions of the transmit-

ed pulses by time �, which is incurred due to the round-trip
istance between the transreceiver and the reflecting object. The
verall measurement is the average of the reflections over all such
ransmitted pulses within the Ts time window and is given by the
xpression

(t) = 1
N

N−1∑
k=0

(g(t − kTp − �) + n(t)), (5)

here g(t) is the reflected signal and n(t) is zero-mean white Gauss-
an noise with variance �2

n .
The general measurement model from the use of such scheme

an be expressed using vector-matrix notation as
= Ah + n, (6)

here y is the m × 1 measurement vector, A is the measurement
atrix of size m × n and n is a vector of size m × 1 representing
receiver in relation to the human subject.

zero-mean white Gaussian noise. h is the sparse vector of size n × 1
to be estimated and composed of two parts; hc , representing the
impulse response created by the subject’s chest movement, and
hbc , representing the impulse response created by the background
objects in the environment. The measurement matrix for the spe-
cific transmission scheme in (5) has a Toeplitz structure in which
each column is a shifted version of the transmitted UWB pulse. We
denote this by matrix A

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(0)

p(1) p(0)
... p(1)

. . .

p(k − 1)
...

. . . p(0)

p(k − 1) p(1)

. . .
...

p(k − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where [p(0), p(1), . . ., p(k − 1)] are the samples of the transmitted
pulse at Nyquist rate.

3.2. Multi-pulse transmission for reduced sampling rate

By modifying the scheme in Section 3.1, we have developed a
novel technique that enables us to sample the received signal at
sub-Nyquist frequencies, while still achieving the accuracy offered
at the Nyquist rate. The technique is based on utilizing as many
pulses in the transmit sequence as the intended amount of sub-
sampling, i.e. N pulses for subsampling by a factor of N compared
to the Nyquist rate. The received sequence is then the delayed ver-
sion of the transmitted pulse sequence according to the distance
of the reflecting object from the transreceiver. However, unlike the
scheme in Section 3.1, where we perform averaging at the receiver
over the received multiple pulses, here we simply subsample the
received sequence by a factor of N. Under the condition that the
number of samples in the pulse interval Tp, are equal to mN − 1,
where m is any integer, we can guarantee the recovery of the same
samples as when sampling a single pulse with the Nyquist rate,
albeit with different permutation. This means that we are utiliz-
ing multiple pulses to recover the same information that would
effectively be carried by a single pulse but in this way we relax
the requirement on the sampling rate at the receiver side, which is
the main bottleneck in any high-frequency system. The condition
Lp = mN − 1, where Lp is the number of samples in the pulse interval
Tp, is to ensure that the samples are taken from unique locations
from each of the received multiple pulses and can easily be sat-
isfied by slightly extending Tp. The transmission scheme remains
the same as in Fig. 3 with the addition of the new constraint and
mathematical expression given by
s(t) =
N−1∑
k=0

ptx(t − kTp) s.t. Lp = TpfN = mN − 1. (7)
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Fig. 3. The transmitted pulse sequence for SNR improvement.
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tipath effects, the remaining impulse response, hd(t), is a sparse
vector with the locations of nonzero elements dependent on the
current location of the chest. Several greedy algorithms have been

1 We expect the background to remain constant most of the time and hence the
assumption hbc(t − ıtb) = hbc(t). At the specific instances when this assumption fails,
Fig. 4. Illustration of pulse samples recov

The resulting measurement, y(t), is constructed by concate-
ating the received sequence over all N transmitted pulses and
ubsampling it by a factor of N. Mathematically, this can be
xpressed as

(t) =
[

N−1∑
k=0

(g(t − kTp − �) + n(t))

]
↓N

, (8)

here ↓N denotes subsampling by a factor of N and the delay, �,
s defined by the distance of the reflecting object from the transre-
eiver as before. Apart from the constraint given above, the amount
f subsampling is only limited by the practical considerations of the
roblem i.e. the acceptable length of the measurement time win-
ow Ts. In general, Ts should be sufficiently small such that the
eceived signals at each pulse interval Tp are identical.

The recovery of the pulse samples using the subsampling
pproach presented above is illustrated in Fig. 4 for N = 5. Here Lp = 9
hich satisfies the condition given above. The circled points are the

ampling instances according to the subsampling ratio N = 5 and it
an be seen that all the required samples are recovered from the
ulses in the received sequence. Similar to the model presented in
ection 3.1, the signal model here can also be represented in the
orm of (6) with the difference in the formulation of the measure-

ent matrix A whose columns are now the subsampled and shifted
ersions of the transmitted pulse sequence in (7), i.e.

j = [s(t − (j − 1)ıts)]↓N

here aj is the jth column of matrix the Ã, with j = 1, 2, . . ., n and ıts

s the sampling interval defined by the Nyquist sampling rate for
he transmitted pulses.

.3. Multipath effect and the background

The received signal, y(t), comprises several multipath compo-
ents of which only one component is assumed to be reflected off
he chest of the human subject. This component of the measure-

ent signal gives us information about the impulse response, hc(t),
elated to the subject’s chest movements. All remaining multipath
omponents correspond to the impulse response created by the

bjects other than the human subject in the environment. They are
epresented as hbc(t). Eq. (6) can hence be written as

= A(hc + hbc) + n. (9)
y subsampling of the received sequence.

The background component can be time variant but is assumed
to remain constant over a short time duration such as the duration
between two measurements. The impulse response, hc(t), varies in
time as a result of being modulated by the subject’s chest move-
ments. Tracking variations in hc(t) will enable us to track variations
in chest displacements.

Under the assumption that the background remains constant
between any two consecutive measurements, we can eliminate
this undesired signal component by using the difference between
two consecutively received signals. The difference between the two
measurements is expected to cancel out the effect of the multi-
path components, retaining only the signal of interest, hc(t), which
would not cancel out due to the subject’s chest movements.1 The
mathematical expression resulting from using Eq. (9) with N = 1 is
given by

z = yt−ıtb
− yt = A(ht−ıtb

− ht) + nt−ıtb
− nt , (10)

where ıtb represents the interval between any two consecutive
measurements. Let

nt−ıtb
− nt = mt ,

then,

zt = A(hbc(t−ıtb) + hc(t−ıtb) − {hbc(t) + hc(t)}) + mt . (11)

For ıtb < 1 s, hbc(t−ıtb) = hbc(t) and hence

zt = Ahd(t) + mt , (12)

with hd(t) = hc(t−ıtb) − hc(t); i.e. the differential impulse response.

4. The SABMP algorithm

Sparsity implies that the vector to be estimated is expected to
have only a few non-zero elements. After the removal of the mul-
the algorithm might fail to track the breathing pattern momentarily. However, as
the background environment stabilizes, we again resume tracking. Note that this
brief loss of tracking is by itself useful information as it gives information about the
movement of the patient in his/her sleep which is an important parameter in sleep
apnea studies.
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Fig. 5. A pre-reco

eveloped for sparse signal estimation. Algorithms like Orthogonal
atching Pursuit (OMP) [18] operate based only on the sparsity

nformation without considering any signal or noise characteristics.
ther algorithms, like Fast Bayesian Matching Pursuit (FBMP) [19]
nd SABMP [21], use the Bayesian statistics of the signal and noise,
long with sparsity rate, to compute the sparse vector estimate.

SABMP has the advantage that it makes no assumption on the
istribution of the signal to be estimated, which makes it suitable
or applications where signal statistics might be unknown [20]. The
oise is still assumed to be Gaussian, which is a reasonable assump-
ion in most cases. The initial estimate of sparsity provided to the
lgorithm is refined after each greedy search for the estimation of
he sparse vector.

The MMSE estimate in the SABMP algorithm is given by the
xpression

ˆ mmse � E[h|y] =
∑

S

p(S|y)E[h|y, S], (13)

here h is the sparse vector to be estimated with unknown dis-

ribution of the non-zero elements and y is the set of available
bservations. The sum is over all possible 2n supports S, where n is
he dimension of h. This means that the SABMP algorithm explores
he entire dimension, n, of the vector to be estimated to provide
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Fig. 6. Signal reconstruction performance at 15 dB
espiratory signal.

the MMSE solution. Moreover, the SABMP algorithm outperforms
most other algorithms in speed and estimation accuracy.

The main input arguments to the algorithm in our case are the
differential measurement vector, z, the measurement matrix, A, a
parameter, rstop, which defines the refinement limit, and an ini-
tial estimate of the sparsity rate, p. Information on the remaining
algorithmic parameters and detailed derivations can be found in
[20,21].

5. Respiratory movement tracking algorithm

The signal model from Sections 3.2 and 3.3 provides us with
means for obtaining the round-trip delay information for the UWB
pulses interacting with the chest of the human subject. After
background removal, the differential impulse response, hd(t), con-
sists of a single cluster of non-zero taps and can be modeled
as a sparse vector. The locations of these non-zero elements
within the sparse vector carry information on the round-trip delay,
which is dependent on the current distance of the chest from the
ultra-wideband transreceiver. The respiratory movements induce
a variable path delay for the reflected pulse and hence the location

of these non-zero elements moves up and down periodically under
our transreceiver setup shown in Fig. 2. By estimating this sparse
vector and the locations of the non-zero elements (or more specif-
ically that of the largest element) in it, we can track the movement

25 30 35 40
conds)

True
Estimated

SNR with a Nyquist sampling rate of 80 GHz.
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f the chest and estimate the respiratory signal. We then employ

he SABMP algorithm for estimating the sparse vector, hd(t), and
btain the delay information using the expression

= argmax
i

(hd[i]), (14)

0 5 10 15 20
−6

−4

−2

0

2

4

6

8

Time (se

C
he

st
 M

ov
em

en
t (

m
ill

im
et

er
s)

Fig. 9. Tracking performance in an environment with a slow-varying backg
nt with a slowly changing background.

where i is the index of the vector locations from 1 : n. Note that

although the differential impulse response hd(t) also contains chest
impulse response components from the previous time instance,
they do not effect the estimation of � through Eq. (14) because of
their negative amplitudes.

25 30 35 40
conds)

True
Estimated

round at 15 dB SNR and with a sub-Nyquist sampling rate of 2.1 GHz.
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Fig. 10. Measurement vectors in an en

The time delay information is then used to obtain the current
istance of the chest wall from the transreceiver using

= � · c

2fN
. (15)

We note that here we used the sampling frequency defined
ccording to the Nyquist criterion, fN, and not the sub-Nyquist fre-
uency, fS, at which the received signal is actually sampled.

The proposed scheme is summarized below for convenience:

lgorithm 1. Respiratory Movement Tracking Scheme

Transmit a sequence of N pulses such that Lp = mN − 1 where N is
the desired subsampling ratio, Lp is the number of samples in the
pulse interval Tp, i.e. Lp = TpfN, and m is any integer
Receive and subsample y(t) at f = f /N over the T measurement
S N s

time window
Calculate the differential signal, zt = Ahd(t) + mt

Estimate the differential impulse response, hd, using SABMP algo-
rithm
Estimate the delay, �
Calculate the chest wall position, d
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Fig. 11. Tracking performance in an environment with a fast-varying backg
ent with a fast changing background.

6. Simulations

Simulations were performed to test the performance of the pro-
posed scheme using a pre-recorded respiratory signal. The data
utilized here is part of a larger dataset made publicly available
by PhysioNet.org [22] and has been recorded using standard Poly-
somnography equipment for diagnosis of respiratory and sleep
disorders. The recorded data represent normal respiratory move-
ments of a human subject having a duration of 40 s. The recording
was made while the subject was asleep. The signal is plotted in Fig. 5
and was used to modulate the transmitted sequence to generate the
synthetic measurements used in our simulations.

We used the IEEE 802.15.3a UWB channel model to generate
the background that was added to each of the synthetic measure-
ments. The qualitative performance of our proposed scheme can be
analyzed by the quality of signal waveform reconstruction, which
is useful for the physician to detect abnormal breathing patterns.
The quantitative performance can be measured in terms of the root
mean-square-error (RMSE) defined as
RMSE =
√

E{(d̂ − d)
2}, (16)

where d̂ is the estimated and d is the true position of the chest.

25 30 35 40
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round at 15 dB SNR and with a sub-Nyquist sampling rate of 2.1 GHz.
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ig. 12. RMSE comparison between Nyquist and sub-Nyquist sampling rates.

Fig. 6 shows the tracking performance of the proposed scheme
t the Nyquist sampling rate. The signal exhibits a peak-to-peak
mplitude of approximately 11 mm and in order to reconstruct the
ignal properly, we set our desired range resolution, ır, to 2 mm,
hich is achieved using a pulse width, Tw , of 50 ps with the asso-

iated Nyquist sampling rate being 80 GHz. The estimated signal
hows good tracking performance, achieving a range resolution,
r, of 2 mm offered by the utilized pulse width. Higher resolu-
ions can be also be obtained by using finer pulses, but for the
urpose of qualitative analysis, this resolution is sufficient. As dis-
ussed in Section 2.2, sampling the received signal at the Nyquist
ate can be computationally expensive. However, with the sub-
ampling scheme of Section 3.2, we are able to achieve the same
yquist rate performance while sampling at a much lower rate of

S = 2.1 GHz using N = 37 in the transmit sequence of Eq. (7) and cho-
en according to the given constraint. Fig. 7 shows the tracking
erformance for the subsampled case, which is very similar to the
ne in Fig. 6.

Next, to evaluate the performance of our background removal

echnique, we test our proposed scheme with a slowly changing
ackground environment. Fig. 8 shows the collection of measure-
ent vectors, y, over time where the background environment
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ig. 13. Performance comparison with non-sparsity based Least Squares (LS) and
parse non-Bayesian OMP algorithms at the Nyquist rate.
Fig. 14. Performance comparison with non-sparsity based LS and sparse non-
Bayesian OMP algorithms at the sub-Nyquist rate.

changes slowly between time t = 21 to t = 24 s. The tracking perfor-
mance of the algorithm is shown in Fig. 9 where it can be seen that
the algorithm loses track of the respiratory movements for a short
duration around the time of change in the background environment
but then it is able to regain tracking as soon as the environment
stabilizes.

We also tested our proposed scheme with a background envi-
ronment that starts changing abruptly at time t = 21 s before
stabilizing after 10 measurement cycles to a very different
background profile at t = 22 s. Fig. 10 shows the collection of mea-
surement vectors, y, over time with the tracking performance of
the algorithm shown in Fig. 11 where it can be seen that the per-
formance is similar to the previous case.

Finally, a quantitative analysis of the proposed scheme is pre-
sented. Fig. 12 compares the tracking performance in terms of RMSE
for two subsampling cases compared with that of the Nyquist rate
sampling. Performance for the subsampled cases is slightly worse
than the Nyquist rate at low SNR values but it can be seen that
our proposed scheme performs well with SNR values of 10 dB or
above with an RMSE of just around 0.1 mm. As such, our subsam-
pling approach has negligible effect on the tracking accuracy and
does not degrade with increasing subsampling ratios particularly at
good SNR levels. As mentioned earlier, the amount of subsampling
is limited only by the constrained given in (7) and by the fact that Ts

should be limited such that both the chest movements and change
in environment within this single measurement time window are
negligible.

To analyze the performance enhancement attributed to the
sparse signal estimation approach of our scheme and that of the
Bayesian framework of the SABMP algorithm, we compare it with
the OMP and Least Squares (LS) methods. In Figs. 13 and 14, we plot
the RMSE for both the Nyquist and sub-Nyquist cases against SNR
values in the range of 0–30 dB. The enhanced performance from
the SABMP algorithm, which exploits both the sparsity and the
Bayesian estimation framework, shows its usefulness as it achieves
the minimum RMSE value at a much lower SNR compared with both
the LS and OMP methods.

7. Conclusion
Here, we presented a comprehensive scheme for tracking the
respiratory movements of a human subject using ultra-wideband
signals. We proposed techniques for efficient removal of back-
ground clutter and for significantly reducing the sampling rate
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